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The effects of a wrong scale factor on the phases computed by the anomalous-dispersion method and 
on the resulting electron-density map have been considered. The errors introduced in the phases are 
functions of I~(H) - eA(H)I and the scale factor, ~(H) and ~A(H) being the correct phase and the heavy- 
atom phase. The electron density computed with these phases can be expressed as a sum of a number 
of component syntheses of which one is very similar to the correct electron density and another to the 
synthesis based on the heavy-atom phases. The remaining terms contribute mainly to the background. 
As a result the electron density computed with a wrong scale contains the structure on an enhanced 
background. The results have been verified in an example based on an actual case. 

Introduction 

That the differences in the intensities of inverse reflex- 
ions, when an anomalous scatterer is present in a non- 
eentrosymmetrie crystal, can be used to determine its 
structure was suggested by Okaya & Pepinsky (1956), 
Peerdeman & Bijvoet (1956) and Ramachandran & 
Raman (1956). Since then the method of phase deter- 
mination (Ramachandran & Raman, 1956), has been 
successfully used by many workers such as Geurtz 
(1963), Dale, Hodgkin & Venkatesan (1963), Hall & 
Maslen (1965), and Nockolds (1966). The application 
of this method needs the intensity data on an absolute 
scale which is not known accurately in the initial stages 
of the structure analysis. The scale factor determined 
by Wilson's (1942) method may be wrong by 40 to 50%. 
Thus any error in the scale factor will show itself in 
the phases. As the phases seem to be more important 
than amplitudes (Srinivasan, 1961) in structure anal- 
ysis, the resulting electron density map is expected to 
be affected adversely. However, in spite of this some 
investigators (Geurtz, 1963; Hall & Maslen, 1965) have 
demonstrated in specific cases the insensitiveness of 
the electron density to the errors in scale factor. 

In the present communication the effects of a wrong 
scale factor on the phases and the resulting electron- 
density map have been considered. It is found that the 
error introduced in the phase of any reflexion depends 
on l e ( H ) - e a ( H ) l  and the magnitude of the scale fac- 
tor; e(H) and ~A(H) denote the correct phase and the 
heavy-atom* phase. 

The nature of the electron density computed with 
these phases can be described as follows. 

The electron density computed with data on a scale 
lower than absolute can be represented as the sum of 
five component syntheses, two of which are the correct 

* Since the anomalous scatterers are invariably 'heavy 
atoms', the expressions 'heavy atom' and 'anomalous scatterer' 
have been used here interchangeably. 

electron density and the synthesis with heavy-atom 
phases. The other components provide background. 
As a result the electron density with wrongly scaled 
data contains the structure superimposed on a back- 
ground. 

In case the data are on a scale higher than absolute, 
the electron density can be expressed as the sum of six 
component syntheses. For the various reasons discus- 
sed in the paper, the interpretation of the component 
syntheses becomes difficult. However, if the error in 
the scale factor is not large; two of the six component 
syntheses are very similar to the correct electron den- 
sity and the synthesis based on the heavy, atom phases. 
As a result electron density computed with a wrong 
scale contains the structure on an increased back- 
ground. 

The intensity data may contain a group of centro- 
symmetric re flexions. Such reflexions have the heavy 
atom phase (neglecting a few cases where the phase 
of the reflexion differs from the heavy atom phase by ~) 
and are not altered by the errors in scale factor. In 
the present analysis such reflexions have not been con- 
sidered. However, it can be stated qualitatively that  
the presence of such reflexions will make the electron 
density less sensitive to the errors in scale factor. 

To verify the results obtained in this paper, data 
based on the (001) projection of ephedrine hydro- 
chloride (Phillips, 1954) have been used. The agreement 
between the theory and the actual computations is 
good. 

The method of phase determination 

In this section we shall briefly outline the method of 
phase determination and discuss some of the aspects 
which will be used in the subsequent analysis. 

Ramachandran & Raman (1956) have shown that 
the phase c~(H) of F ' (H)  is related to the phase of the 
anomalous scatterer O~A(H) by 

o~(H)=O~A(H)+ rc/2 + O, (1) 
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0 < 0 < n and 0 is given by 

cosO=AFZ/4[F'(H)[ ]FA (H)[ ,  (2) 

where AFZ=[IF(H)IZ-IF(H)]2], ]F'(H)I=[½{IF(H)I 2 
+ IF(/7)I2} - IF A (H)I2] 1/2 and IF)] (H)] is the contribu- 
tion of the anomalous scatterer corresponding to the 
imaginary component of the scattering factor. The 
limits 0_< 0 < n arise from the convention of choosing 
0 between 0 and n/2 or n/2 and n according as AF 2 
is positive or negative. Equations (1) and (2) are valid 
when all the anomalous scatterers are identical. 

Thus for O<_]o~(H)-o~a(H)l<n/2 the phases are 
given by 

oh(H)=o~a(H)+ n /2 -O  , (3) 

and for n/2 < le(H) - ~A(H)I __ n the phases are given by 

0c2(H) = ~A(H) + n/2 + 0.  (4) 

Thus there exists a twofold ambiguity in the deter- 
mination of the phases. This ambiguity is usually 
resolved by choosing from the two possible solutions, 
the one closer to aA(H). It is readily seen that el(H) 
is closer to O~A(H) than 0c2(H ) since lel(H)--~a(H)] < 
IOc2(H)--O~A(H)[. The success of this method of resolv- 
ing the phase ambiguity indicates that for most reflex- 
ions l e ( H ) - e a ( H ) l  lies between 0 and n/2. The the- 
oretical studies on the distribution of Io~(H)--O~A(H)I 
by Parthasarathy (1965) support this fact. The distri- 
bution of le (H)-~A(H)I  depends on the heavy atom 
ratio O'2(= X. f2A /X f  2) and on the number of anom- 

all 

alous scatterers and their arrangement in the unit cell. 
However the nature of the distribution does not change 
markedly (Fig. 3 of Parthasarathy, 1965) with the num- 
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Fig. 1. Cumulative distribution of IoffH)--C~A(H)l for one 
anomalous scatterer in the unit cell. 

ber and the arrangement of the anomalous scatterer 
in the unit cell. For subsequent discussion we shall 
consider the case of one anomalous scatterer in the 
unit cell. The distribution of ]cffH) -c~A(H)] for various 
values of a 2 is shown in Fig. 1. It is seen that the frac- 
tion of the total reflexions having I~ (H) -  C~A(H)I < n/2 
is large and increases with increasing value of a 2. 

However, there is a small fraction of the total num- 
ber of reflexions with ]~(H)-~A(H)] >n/2  and the 
phases are given by equation (4). If we follow the 
above mentioned method of resolving the phase am- 
biguity, i.e. use equation (3) for the calculation of 
phases, the phases of such reflexions will be wrong, 
the error being 120l. It must be noted that this error 
is inherent in the method of resolving the phase am- 
biguity. Since the number of such reflexions is small, 
we shall omit them in the present analysis. 

The error in the phases 

Let the scale factor* k be such that the observed struc- 
ture amplitudes IFo(H)] are related to those on the 
absolute scale by IFo(H)[ =kIF(H)I. Thus AFZ=k2AF 2 
and IFo(H)I~_kIF'(H)I because lEA(H)] 2 is usually 
small compared with -}[F(H)] 2 + ]F(/-?)12]. With 
wrongly scaled data equation (2) gives 

cos 0 ' =  AFZo/41F'o(H)I IF'~ (H) I  

=kAF2/41F'(H)I IF~ (H) I  

or cos 0 ' = k  cos 0.  (5) 

Let ~0 = 0 ' - 0 .  Thus ~0 is the error introduced in 0. 
The phase calculated with this is given by 

o~k(H) = O:A(H) + n/2 - O' 

= ~ ( H ) - ~ 0 .  (6) 

For all values of k less than unity equation (5) is 
well defined. It is readily seen that ~p is zero at 0 = n / 2  
for all values of k. This is expected because in such 
a case the reflexion has the heavy atom phase. As 0 
decreases from n/2 to 0 or increases from n/2 to n, 
t~0] increases. ~0 is positive if 0<  O<n/2 and negative 
if n/2 < O< n. 

However, if k > 1, equation (5) is defined only when 
[k cos 0]<  1. Thus if k = 2, all cases with n/3 < 0 < 2n/3 
can be described by equation (5). In cases 0 < 0< n/3 
and 2n/3 < 0 < n, one gets a value of I cos 0'l exceeding 
unity. This result, though inadmissible, is nevertheless 
important in practice as it readily suggests that k > 1. 

Hall & Maslen (1965) have reported the occurrence 
of such cases in their work. They have tried three 
procedures for treating such reflexions. One is to set 
0 ' = 0  if cos 0 ' >  I. The other two are either to omit 

* The scale factor defined in this manner is the reciprocal of 
the commonly defined scale K=Z IFcl/[Z IFol. 
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such reflexions completely or to put the phase of the 
reflexion equal to the heavy atom phase. Setting 0 ' =  0 
is reported to have provided most reliable results. Let 
us examine in a specific case k = 2, the errors introduced 
in the phases if one adopts the procedure of setting 
0' = 0 when cos 0' > 1. For  reflexions with ~/3 < 0 < 2~/3, 
the errors are given by equation (5). Fig.2 shows a 
plot of ~0 versus O. The error introduced in the range 
0 < 0 < re/3 varies linearly from 0 to re/3. Thus the pro- 
cedure of setting 0 ' = 0  in the case cos 0 ' >  1 leads to 
correct results when 0'  is close to zero. It must be 
noted that  for 2rc/3 < 0 < re, cos 0 '  < - 1. No mention* 
has been made by Hall & Maslen (1965) of such cases. 
If the procedure of setting 0'  = 0 is uniformly adopted, 
the error increases from 2rc/3 to r~ in the range 
2rc/3 < 0 < re. However, a logical extension of the pro- 
cedure of setting 0 ' =  0 for cos 0 ' >  1 would be to set 
0 ' = n  if cos 0 ' < -  1. In such cases the error varies 
linearly from re/3 to 0 as 0'  changes from 2rc/3 to re. 

Thus, trying to adopt any procedure such as setting 
0 '  = 0  or its other equivalent would mean to rely too 
much on the scale factor which is liable to large errors. 
A better procedure is to scale down the data so that  
the largest I cos 0'1 value encountered is reduced to 
unity. I cos 0'1 > 1 may also arise owing to the errors 
in the measurement of intensities but such cases will 
be few. Frequent occurence of such cases must be taken 
as a positive indication of a high scale factor. 

Fig.3 shows a plot of ~0 versus ( re /2-0)  for k=0 .5 ,  
1.5 and 2.0. It is seen that ~0, the error introduced in 
0 and hence in the phases is large for large values of 
(7r/2- 0). 

The electron density function 

We have already seen that equation (5) is well defined 
for all values of 0 if k < 1 and the phases are given 
by equation (6). If  k > 1 the phases are given by equa- 
tion (6) only for reflexions with Ik cos 01< 1. Let the 
number of such reflexions be N(k). For the remaining 
N - N ( k )  reflexions, N being the total number of re- 
flexions, Ik cos 01> 1 and ak(H) depends on how such 
reflexions are treated. If  we follow the scheme of setting 
0 ' =  0 or zc according as cos 0'  > 1 or cos 0'  < - 1, then 

~k(H) = ~A(H) + rag~2, 

where m = 1 or - 1 in the two cases. Thus the electron 
density 0k(r) computed with wrongly scaled data is 
given by 

N (k) 
Qk(r)= Z kIF'(H)I exp {i[a(H)-~0]} exp { - 2 r c i H .  r} 

H 

+ X klF'(H)I Iexp i aa(H)+m 
t I  

x exp { - 2 r c i H .  r} .  (7) 

* According to a private correspondence with Dr S. R. Hall, 
cases with cos 0 '<  - 1  were observed and 0 ' = n  was used in 
such cases. 

Obviously N ( k ) = N  for k<_ 1 and the second term 
exists only for k > 1. 

From equation (5) we have 

cos (0+~0)=k cos 0 for Ik cos 01 < 1, 

or ~0 = cos-l(k sin 7 ) - 0  

- - ( 1 - k ) 7  4- k ( 1 - k  2) k ( 1 - k  z) (9k z -  1) 
6 73 + 120 7 5 + . . . 

where 7 = ~ / 2 -  0. 
Let us introduce a function s(7) such that ~0 = 7s(7). 

Thus 

s(7)=(o/7=.(l_k)+ k ( l - k 2 )  72 
6 

+ k(1-k  2) (9k 2-1) 74 + 
120 ' " " 

O 

90 

I I I I I I 

-90 -60 -30 0 30 60 90 

180 

150 

120 

60 

30 

a(H) -ak(H ) 

Fig.2. Errors introduced in the phases as a function of 0 for 
k = 2 .  
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Fig. 3. Plot of ~0 v e r s u s  ( ~ / 2 -  0) for various values of k. 
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o r  

s()') = ( 1 - k ) + f ( ) ' ) ,  (9a) 
where 

f(7) = k(1-k2))'26 + k ( 1 - k  2)120(9k2- 1))'4 + . . .  (9b) 

Now the following identity can be readily shown: 

exp [ -  i~0] = exp [ -  i)'s(7)] 
=[1-s ( ) ' ) ]+s ( ) ' )  exp [ - i ) ' ] +  I~()')l exp [ie()')], 

(lO) 
where 

6(?) cos e()') = [ cos (o - s(y) cos 7] - [ 1 - s()')] (11) 

and 
6()') sin e()')=[s(7) sin 7 -  sin cp]. (12) 
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Fig. 4. Plot  o f  N ( k ) / N  versus k. N ( k )  is the number  of  reflexions 
for  which Ik cos 0l _< 1. The curves are deduced  f rom Fig. 1. 

0"4 

0"3 

0'2 

0'1 

k:,2"O "k~1"5 

~ ' ~  = 0"5 

2O 40 6O 80 IT 
7 - 0  

Fig. 5. Plots o f  160')1 (full line) and If(Dl (broken  line) versus 
lyl. The If(?')[ plot  falls close to the 16(?')1 plot  for  k =  1.5 
and 2. 

On substituting the value of s()') from equation 9(a) 
in equation (10) we have, 

exp [ -  i¢0] = k - f ( ) ' )  

+[(1-k)-I-f() ' ) ]  exp [-i7]+16()')1 exp [ie()')]. (13) 

On substituting the value of exp [-i~0] from equa- 
tion (13) in equation (7) we have, 

0k(r) = k20ok(r) + k( 1 -- k)OAk(r) 
• t + k[0A~ (r)-- 0ok (r)] + k0"(r) + ko"'(r) 

where 
(14) 

N (k~ 
0ok(r) = Z' ]F'(H)] exp [i0ffH)] exp [ - 2 r d H .  r] 

H 

N (k) 
0Ak(r)= X [F'(H)[ exp [iocA(H)] exp [ - 2 r c i H .  r] 

H 

N (k) 
0Ak(r) = X IF'(Y)lf()') exp [io~A(Y)] exp [ -2~z iH .  r] 

H 

N (k) 
Ook(r) = ,Y, IF'(n)lf()') exp [is(H)] exp [ - 2 z d H .  r] 

H 

N (k) 
0"(r) = S IF'(H)[ 16()')l exp {i[~(H)+e()')]} 

H 
x exp [ -  2zdH.  r] 

N--N (k) 
0"'(r) = X [F'(H)I exp {i[oeA(H)+mzc/2]} 

H 
x exp [ - 2 r c i H .  r] . 

The significance of these different syntheses may be 
described in the following way. 

0ok(r)- and OAk(r)-synthesis 
0ok(r) includes all the reflexions for k < l .  Thus it 

represents a synthesis which employs the correct phases 
for all the reflexions but for a few for which 
[~(H) - ~A(H)[ > z~/2. Therefore, 0ok(r) for k < 1, simply 
denoted by 0o(r) hereinafter, will be very similar to 
but not the same as 0(r), the correct electron density. 
It must be noted that under the ideal conditions of 
the measurement of intensities and scaling we shall 
have only 0o(r). The difference between 0o(r) and 0(r) 
is inherently due to the method of resolving the phase 
ambiguity. 

Further it is seen that the number of reflexions with 
Io~(H)--~A(H)[ <hi2 decreases as a 2 decreases. Thus 
for very small value of a 2 the resemblance between 
0o(r) and 0(r) may become poor. Structures with a 2- 
values as low as 0.17 and 0.13. [Factor V l a  by Dale, 
Hodgkin & Venkatesan (1963) and 'O'  monoacid of 
B12 by Nockolds (1966)] have been solved by this 
method. In each case 0o(r) is very similar to 0(r). We 
shall, therefore, take 0o(r) to be the same as 0(r). 

For the case k > 1, the number, N(k) of the reflex- 
ions included in 0ok(r) depends on the value of k and 
the distribution of [c~(H)-OCA(H)[. Fig.4 shows a plot 
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N(k)/N versus k for various values of 0.2. For  any value 
of 0.2, N(k) decreases with increasing value of k. 
Fur ther  for  a given error in scale factor N(k) decreases 
with decreasing value of 0.z. Thus as the error in scale 
factor increases N(k) decreases and 0o~(r) loses the 
features of the correct electron density. However, if k 
is not  large N(k) ~_ N and 0o~(r) is similar to the correct 
electron density. Thus largest value of k that  can be 
permitted without  spoiling Ooze(r) appreciablywil l  de- 
pend on the value of 0.2. 

A similar explanation holds for 0Ag(r). In the case 
k _< 1, ~)Ak(r)  represents the synthesis based on the heavy 
a tom phases which is known to contain some features 
of the correct electron density. For  k >  1, 0Ag(r) in- 
cludes only N(k) terms and gradually loses the features 
of the structure as k increases. 

t t . 
0oi, (r)- and OAk (r)-synthests 

0ok (r) employs the correct phases while the structure 
amplitudes are modulated by f(7) defined by equation 
(9b). f(7) is positive or negative according as k < 1 or 
k >  1. A plot of I/(?,)1 versus  ~ (Fig. 5) indicates that  
I/(~)1 is small for small values of 7. Fur ther  it is seen 
from Fig. 1 that  a large fraction of the total re flexions 
lies in the small I~l range. Thus most  reflexions have 
a small [f(7)l value. This is made clear in Fig. 6, which 
shows a plot of IN(7)I/N versus If(y)l, N(7) being the 
number  of reflexions with ITI values in the range 0 to 
I7]. For  k = 0 . 5  and 0.z=0-4 nearly 80% of the reflex- 
ions have If(7)[ _<0.10. For  k =  1:5, 45% of the reflex- 
ions have [f(7)l _<0-10. Thus we see that  for most  re- 
flexions the amplitude terms are suppressed by f(y)-  
modulat ion.  Further,  f (~)-modulat ion introduces a cer- 
tain amount  of random character in the amplitudes. 
Hence 0ok(r) is similar to the ' r andom synthesis' 
(Srinivasan, 1961) which employs the correct phases 
but  randomly permuted amplitudes. A ' r andom syn- 
thesis' is known to contain the peaks at atomic sites 
of the structure. Thus 0ok (r) contains peaks at atomic 
sites but  the peak strength will be small owing to the 
small amplitudes used in the synthesis. 

A similar interpretat ion holds for 0~k (r). 
However, if we assume that  o~(H)~o~A(H), e.g. in 

the case where (7 .2 is large, then 0ok (r)~_ OAk (r) and the 
term [0~k (r) -- ~ok (r)] in equation (14) is nearly zero. If  
the 0 .2 value is small or the heavy atoms are centro- 
symmetrically related, Qok(r) and 0Ak(r) will be quite 
different but  as discussed earlier, both the terms will 
be small. 

O"(r)-synthesis 
The amplitudes and the phases in Q"(r) are 

Ic~(v)l IF'(H)I and a (H)+e(7 )  respectively. A plot of 
I~0')1 versus Iwl (Fig. 5) indicates that  I~(~)1 is similar 
to If(w)l in nature as well as in magnitude.  Thus I~(~)l- 
modulat ion suppresses most  amplitude terms while e(?,) 
disturbs the phases. As a result Q"(r) hardly contains 
any features of the structure and provides only a small 
background.  

O'"(r)-synthesis 
By definition 0 '"(r)  = 0 for k < 1. As discussed earlier, 

the convention of setting 0 ' = 0  or zc according as 
cos 0 '  > 1 or cos 0 '  < - 1 leads to correct values of the 
phases only for 0 values close to 0 or re. However in 
actual cases there are not  many reflexions with 0 values 
close to 0 or re. For  example, in the case of a structure with 
one heavy a tom and 0.2 ~___ 0.6, only 2% of the reflexions 
will have 0 values in the range 0-10 ° and 170-180 °. 
If  k- -  1.5 in this case, nearly 24% of the reflexions will 
have I cos 0'1 > 1. Thus most  of these will have wrong 
phases and therefore Q'"(r) will mainly provide back- 
ground. 

Discussion 

Thus we see that  the electron density computed with 
wrongly scaled data can be expressed as the sum of 
five or six component  syntheses [equation (14)] accord- 

o4 ] 
If(Y)l k=1.5 

0'2 0'3 /0"2=04 
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0 
0 0.2 0.4 0.6 0.8 1.0 

N(y) 
~V 

Fig.6. Plot of If(7)[ versus N(7)/N. The curves are deduced 
from Figs.(1) and (5). 
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ing as the data are on a scale lower or higher than 
absolute. Only the first two terms, ciz. 0oe(r) and 0a/c(r), 
contain the features of the structure and remaining 
terms contribute mainly to the background,  which in- 
creases with increasing value of k. Retaining only the 
first two terms in equation (14) we have 

0x(r) ~ k20ok(r) + k( 1 - k)0Ak(r)  • ( 1 5) 

For  k_< 1, Ook(r)=0o(r) and OAIc(r)=oA(r ). When 
k > l  and the error is not large, 0ox(r)--0o(r) and 
OAk(r)~_OA(r). Thus equation (15) can be written as 

0e(r)-~ MOo(r) + k( l - k)OA(r) . (16) 

b 4  CI 
!J ;; ( ~ i l  ...... > 

,,'<-,, 
iui  c (8 ) i i [ ~ ( (~ ( ( kk .~ )  ;s(3),xC 5 

. . . . . . . . .  , 

~J 

( )  ',...Oy..,, :', . . . .  , "~-~y;c(1)  ( 

( a )  

a/2 

b X ,;" 

< ..... : .... , ()  ...... 

• ,,,, C(5) 

~ ~  o12 
( b )  

Fig.8. (a) 0k(r)/k w i th  k = 0 . 5 .  (b) Plot of  0.5 [00(r)+QA(r)]. 
The contours are drawn f rom 1"5 e./~-2 at intervals of 
0.5 e.ik-2. The shaded region is more than 4 e.~ -2. 

0e(r) is a superposition of the correct electron density 
(scale k z) and the synthesis based on the heavy atom 
phases (scale k - M ) .  For small values of k, the first 
term is small and 0x(r) is no better than 0A(r). OA(F) 
normally contains some features of the structure. How- 
ever it may also contain some spurious peaks or some 
of the correct peaks may be absent. Besides this some 
peaks may be slightly shifted from the correct atomic 
positions. We shall not consider such shift of peaks 
and broadly classify the peaks encountered in 0o(r) and 
0A(r) as f o l l o w s :  

(a) The most  commonly  encountered peaks are those 
which are common to both 0o(r) and 0A(r). Thus if 
0o(r) and 0a(r) contain peaks of strength So and SA 
respectively at a common position r, then 0k(r)will con- 
tain at r a peak of strength 

Sk ~- kZSo + k(1 - k ) g A  . 

If we assume that  So'~SA=S then Sk~kS .  This is 
the strength which will be obtained if amplitudes 
kIF'(H)] and the correct phases are used to compute 
the Fourier  series. 

(b) Often encountered peaks are those which are 
present only in 0o(r) and not in 0A(r). Such peaks are 
of interest in structure analysis as they are correct but 
do not appear in 0A(r). The corresponding peak in 
0k(r) will have a strength kZSo. I fk  < 1, such peaks have 
strength less than their correct value So. If k > 1, these 
peaks come up in 0x(r) with strength which is more than 
So. 

(c) Another  type of peak is present only in 0A(r) but 
not in 0o(r). Such peaks are obviously spurious. The 
corresponding peak in 0k(r) will have a strength 
k(1 -k)S.4 .  Thus such peaks are positive for k < 1 and 
negative for k > 1. 

An interesting case arises when the heavy a tom ar- 
rangement  has a centre of symmetry.  This is so, for 
example, in the case of space group P21. The synthesis 
based on the heavy a tom phases contains a spurious 
mirror  symmetry.  Thus corresponding to every (a)-type 
peak at ra in 0a( r ) ,  there occurs a peak of equal strength 
at rm; ra and rm are related by spurious mirror  sym- 
metry. Obviously the peak at rm belongs to type (c). 

If the peak strengths at ra and rm in 01c(r) be S(k) 
and Sin(k) respectively, then it can be easily shown 
from equation (16) that,  

Sin(k) (1 -k )gA 
S(k) - kSo + SA(1 - k )  " 

If  S A ~-- So then 
Sin(k) 

_ ( l - k ) .  

Clearly for k < 1, Sm(k) is positive and the spurious 
mirror  symmetry which is present in 0A(r) is not com- 
pletely destroyed in 0x(r). If k >  1, Sin(k) is negative. 

In practice it seems more advantageous to have k > 1, 
firstly because corresponding to every (c)-type peak in 
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0A(r) there is a negative peak in og(r) and secondly 
because corresponding to every (b)-type peak in Oo(r) 
there occurs in oe(r) a peak with increased strength. 
Both these factors are of great importance in actual 
structure analysis. However, if k is large these advan- 
tages may be lost by increase in background. 

The results obtained thus far can be explained qual- 
itatively as follows: In the anomalous dispersion 
method of phase calculation, OeA(H) may be regarded 
as having to be corrected by a factor (n /2-0) ,  giving 
ct(H). Thus the difference between 0o(r) and 0A(r) 
which employ ct(H) and O~A(H) respectively is due to 
the correction term (n /2-0) .  Thus the correction term 
suppresses the spurious peaks in 0A(r) and builds up 
the correct ones. It can be easily shown from equation 
(5) that the magnitude of the correction term ( n / 2 - 0 )  
is always underestimated if k < 1. As a result og(r) will 
be better than oa(r) but the spurious peaks in 0a(r) 
will not be completely suppressed, nor will the correct 
peaks be adequately strengthened. For k > 1, the mag- 
nitude of the correction term is overestimated. Thus 
the improvement which is brought about by the cor- 
rection term is overdone. As a result, the spurious 
peaks in 0A(r) which are suppressed in 0o(r) will be 
rendered negative in 0g(r). On the other hand the cor- 
rect peaks which are not present in 0A(r) will be over 
strengthened in eg(r). 

This rather simple analysis does not give any quan- 
titative idea of the background provided by the other 
terms in equation (14). It can be stated qualitatively 
that for a given structure the background increases 
with the increasing value of k. Further, two structures 
with different a z values will have different amounts of 
background for a given error in the scale factor; the 
structure with larger a z will have smaller background. 

Experimental verification 

In order to verify the results obtained in this paper, 
the projection data on ephedrine hydrochloride (Phil- 
lips, 1954) have been used. 

From the knowledge of ~(H) and ~A(H), a~(H) for 
k=0.5,  1.0 and 1.5 have been calculated. Although 
experimentally observed anomalous dispersion data 
are available (Ramachandran & Raman, 1956) and 
could have been used for the calculation of ~ (H) ,  the 
following procedure was adopted in order to eliminate 
the errors in the measurement of intensities: 

where 

If k sin 7 > 1 

if k sin 7 < - 1 

o~k(H)=ctA(H) + 7 ' ,  

7 '= sin-l(k sin 7) 

7 =oe(H)-O~A(H). 

a~(H) = aA(H) + r~/2 ; 

oe~(H) = O~A(H) - zc/2 . 

If the experimental data are used and the phases 
are calculated from equations (2) and (3) then 
let(H)-aA(H)] < re/2. However, in the present example 
16 out of 80 reflexions have [a(H)-~A(H)I>rc /2 .  In 
order to make the above calculations correspond to 
actual anomalous dispersion calculation, 7 and 7' are 
always chosen between re/2 and - re/2. If the actual value 
of y is outside this range 7 is subtracted from z~ in order 
to bring 7 in the desired range. All the computations 
have been made on a Ferranti Sirius computer. On 
this computer this is best done by taking A R C S I N  
( S I N  7); which is always given in the range re/2 and 
-n /2 .  

The following computations were made with the use 
of these phases: 

!! i ° .,,.'b,i 

, N '; ".._~(!) . . . .  "C(2) . . . . .  
. . . .  " 

.-. " . . . . . . . .  ." ('~C(4~)~ ( 
:'" "'., ',, \',,.k.~J \ \  

o), "'~''~'~k-~',,\\\\\\'~ ',...o ~ " . . ~  
i "., "'" . . . . .  ' W2 

(a) 

CI 
b / C J  ......... " 

',,,COO) ,,,'" "... ..... ", , "  , / - ' "  \ ~ "  ..... 

c@) ( . . . . . .  c(1) 

; ", " - . . . .  4 
O, a12 

(b) 
Fig. 9. (a) o~(r)/k with k = 1.5. (b) A plot  of  [1-500(r) - 0"50L(r)]. 

The contours  are drawn f rom 1-5 e./~-2 at intervals of  I e.A -2. 
The shaded region is more  than 5 e.A-2. 
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(i) ak(H) for k =  1 were evaluated and a Fourier syn- 
thesis with these phases has been computed (Fig.7). 
13 centrosymmetric reflexions of the type h00 have not 
been included in the summation. 

In Fig.7 all atoms have come up correctly except 
C(1) and C(6), which are displaced from their correct 
positions. After including h00 terms peak C(1) shifts 
halfway towards the correct position. 

The atoms C(5) and O have not come out with their 
correct strengths. This is mainly because h00 terms 
have been omitted. On including these terms both the 
peaks have the correct strengths. 

Three spurious peaks marked S1, $2 and $3 appear 
of which all except S~ are suppressed on adding h00 
terms. S~ becomes slightly stronger. 

Thus the only difference between 0o(r) and 0(r) is that 
the former contains one spurious peak S~ and the peaks 
C(1) and C(6) are slightly displaced from their correct 
positions. 

(ii) Qa(r)/k, the synthesis based on the heavy atom 
phases was computed (not shown in the Figure). 

(iii) ok(r)/k with k=0 .5  and 1-5 were computed and 
are shown in Figs. 8(a) and 9(a) respectively. 

(iv) Fig. 8(b) shows a plot of [0"500(0 +0"50A(r)]. 

(V) Fig. 9(b) shows a plot of [l'50o(r)--0"50A(r)]. 

A comparison of Figs. 8(a) and 9(a) with 8(b) and 
9(b) respectively shows that the first two terms, viz. 
0ok(r) and 0ak(r), in equation (14) describe 0k(r) satis- 
factorily. 

An analysis of Figs. 8(a) and 8(b) indicates that the 
difference between the two maps is a maximum at the 
CI peak, the difference being 0.9 e.A -2, and nowhere 
else does the difference exceed 0.6 e.A -2. For Fig. 9(a) 
and (b) the difference at the C1 peak is about 2 e.A -2 
and elsewhere it is less than 1.5 e.A -2. 

Conclusion 

The degree of correspondence between the Fourier 
synthesis with wrong scale and the synthesis of the 
correct structure is decided jointly by the error in scale 

and the heavy atom ratio. For the values of heavy 
atom ratio and the errors in scale normally encountered 
in practice, the background terms in equation (14) are 
small and the electron density with wrong scale is de- 
scribed to a good approximation by the superposition 
of the correct electron density (scale k 2) and the syn- 
thesis based on the heavy atom phases (scale k -k2) .  
This explains the general insensitiveness of the electron 
density map to the errors in scale factor. However if 
the error in scale factor is so large that the contribu- 
tions from the background terms increase considerably, 
the quality of the electron density map is bound to 
suffer. 
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